Chronotype influences diurnal variations in the excitability of the human motor cortex and the ability to generate torque during a maximum voluntary contraction.
نویسندگان
چکیده
The ability to generate torque during a maximum voluntary contraction (MVC) changes over the day. The present experiments were designed to determine the influence of an individual's chronotype on this diurnal rhythm and on cortical, spinal, and peripheral mechanisms that may be related to torque production. After completing a questionnaire to determine chronotype, 18 subjects (9 morning people, 9 evening people) participated in 4 data collection sessions (at 09:00, 13:00, 17:00, and 21:00) over 1 day. We used magnetic stimulation of the cortex, electrical stimulation of the tibial nerve, electromyographic (EMG) recordings of muscle activity, and isometric torque measurements to evaluate the excitability of the motor cortex, the spinal cord, and the torque-generating capacity of the triceps surae (TS) muscles. We found that for morning people, cortical excitability was highest at 09:00, spinal excitability was highest at 21:00, and there were no significant differences in TS EMG or torque produced during MVCs over the day. In contrast, evening people showed parallel increases in cortical and spinal excitability over the day, and these were associated with increased TS EMG and MVC torque. There were no differences at the level of the muscle over the day between morning and evening people. We propose that the simultaneous increases in cortical and spinal excitability increased central nervous system drive to the muscles of evening people, thus increasing torque production over the day. These differences in cortical excitability and performance of a motor task between morning and evening people have implications for maximizing human performance and highlight the influence of chronotype on an individual's diurnal rhythms.
منابع مشابه
Corticospinal Facilitation of Erector Spinae and Rectus Abdominis Muscles During Graded Voluntary Contractions is Task Speci.c: A Pilot Study on Healthy Individuals
Introduction: In this study we compared transcranial magnetic stimulation (TMS) elicited motor evoked potentials (MEPs) in a postural (bilateral low back extension: BLBE) and a respiratory (forced expiration during breath holding: FEBH) task.Methods: Using TMS of the left motor cortex, simultaneous patterns of corticospinal facilitation of the contralateral erector spinae (ES) and rectus abdomi...
متن کاملInfluence of Motor Imagery of Isometric Opponens Pollicis Activity on the Excitability of Spinal Motor Neurons: A Comparison Using Different Muscle Contraction Strengths
[Purpose] This study aimed to determine the differences in the excitability of spinal motor neurons during motor imagery of a muscle contraction at different contraction strengths. [Methods] We recorded the F-wave in 15 healthy subjects. First, in a trial at rest, the muscle was relaxed during F-wave recording. Next, during motor imagery, subjects were instructed to imagine maximum voluntary co...
متن کاملCortical and Spinal Excitability during and after Lengthening Contractions of the Human Plantar Flexor Muscles Performed with Maximal Voluntary Effort
This study was designed to investigate the sites of potential specific modulations in the neural control of lengthening and subsequent isometric maximal voluntary contractions (MVCs) versus purely isometric MVCs of the plantar flexor muscles, when there is enhanced torque during and following stretch. Ankle joint torque during maximum voluntary plantar flexion was measured by a dynamometer when...
متن کاملReal-Time Changes in Corticospinal Excitability during Voluntary Contraction with Concurrent Electrical Stimulation
While previous studies have assessed changes in corticospinal excitability following voluntary contraction coupled with electrical stimulation (ES), we sought to examine, for the first time in the field, real-time changes in corticospinal excitability. We monitored motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation and recorded the MEPs using a mechanomyogram, which is...
متن کاملFurther evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions.
The present study aimed to further investigate whether the intracortical neural circuits within the primary motor cortex (M1) are modulated during ipsilateral voluntary finger movements. Single- and paired-pulse (interstimulus intervals, ISIs; 3 ms and 12 ms) transcranial magnetic stimulations of the left M1 were applied to elicit motor evoked potential (MEP) in the right first dorsal interosse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biological rhythms
دوره 24 3 شماره
صفحات -
تاریخ انتشار 2009